If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-1500x-140000=0
a = 15; b = -1500; c = -140000;
Δ = b2-4ac
Δ = -15002-4·15·(-140000)
Δ = 10650000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10650000}=\sqrt{10000*1065}=\sqrt{10000}*\sqrt{1065}=100\sqrt{1065}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1500)-100\sqrt{1065}}{2*15}=\frac{1500-100\sqrt{1065}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1500)+100\sqrt{1065}}{2*15}=\frac{1500+100\sqrt{1065}}{30} $
| 9x+3=2x+5 | | 5.2x=83.2 | | ¼b=20 | | 0=48+80t-16^2 | | 16=16x-8 | | 16=8(2x-1) | | 2/5(j+4)=-4 | | 3x+8=7x+32 | | x³=42.875 | | y^2-7y+40=0 | | 2(3x+3=18 | | 15x-235=0 | | 9-3y-3y=-3 | | 9+3/4e;e=12 | | 10-(-7x)=3 | | −4(x−11)=8(x−11) | | 10–-7x=3 | | −2(t+4)=32−6t | | −2(t+4) = 32−6t | | (120x/100-100)-(100x/100-100)=25x/100 | | (3x^2+2)^2-25=0 | | 0.3x+1.4=7.7 | | (3x^2+2)^2=25 | | -20-10j=16+2j | | -4+3x=-6+15x | | -15+3q=-12q+6+18q | | 14+16g=17g | | -2q-5+9q=10q+7 | | -9v+4=-10v+8 | | 6u+1=8u-9 | | 7m+7=1+6m | | 7m+7=–1+6m |